Forests that may resist climate change

Friday 26 Apr 2024

 
While it’s common knowledge that mountaintops are colder than the valleys below, a new University of Vermont (UVM) study is flipping the script on what we know about forests and climate.

The study, published in Ecology and Evolution, explores forests that experience “cold-air pooling,” a phenomenon where cold air at higher elevations drains down into lower-lying valleys, reversing the expected temperatures—warm at the bottom, cold at the top—that typically occurs in mountainous areas. That is, the air temperature drops with descent from mountain to valley.

“With temperature inversions, we also see vegetation inversions,” says lead study author and former UVM postdoctoral researcher Melissa Pastore. “Instead of finding more cold- preferring species like spruce and fir at high elevations, we found them in lower elevations—just the opposite of what we expect.”

And the effect on these ecosystems is substantial: “This cold-air pooling is fundamentally structuring the forest,” says study coauthor and UVM professor Carol Adair.

This insight “can help forest managers prioritise and protect areas with frequent and strong cold-air pooling to preserve cold-loving species as the climate warms,” says Adair.

The researchers looked at three forested sites in New England, ranging from the shallow, crater-like Nulhegan Basin of Vermont’s Northeast Kingdom, to the higher peaks and deeper valleys of the Green Mountains, over two years. They collected data on the types of trees present across elevation transects and monitored temperature hourly.

The researchers found that, far from being the occasional nighttime, seasonal phenomenon it’s historically been thought to be, cold-air pooling happens frequently, year-round, well into daylight hours, Adair says. The phenomenon occurred at every site they studied, but was strongest at the site with the shallowest elevation change.

More >>

Source: University of Vermont


Share |



Copyright 2004-2024 © Innovatek Ltd. All rights reserved.